Phone:

Tel: 0049 (0) 151-21062013

Tel: 02582-6698694

Fax: 02582 6698693

Unsere Adresse:

bestvibe-technology

Grothues 27

48351 Everswinkel 

KONTAKT

© 2018 by BestVibe

Unser Motto:

Do the best …feel the best …be the best >>>bestvibe!

Die bestvibe-Geräte-Serie wurde vom BMS-Geräte-Designer Ossy Lieser – basierend auf den Erfahrungswerten von Anwendern aus Therapie, Hochleistungs-Sport und Wissenschaft – entwickelt.

 

Ende der 90-er Jahre lernte Ossy Lieser im Rahmen einer BMS-Behandlung bei Marianne Walter, Norden, die ersten BMS-Geräte kennen. Er erkannte bald, dass hier einiges an Verbesserungen (Schwingungs-Muster und Schwingungs-Stabilität, Design, Geräuschentwicklung, Behandlungs-Ergonomie, Bedienungskomfort usw.) zwingend notwendig war und Ossy Lieser stellte schon bald den Fachkreisen eine multidimensional/diagonal/stochastisch und vertial schwingende Plattform vor, die dann mit geändertem Design als bestvibe“multi“ an den Markt ging.

 

In der bestvibe“multi“ wurde weltweit erstmalig bei Geräten dieser Bauart der Vertikal-Schwingmodus (Känguru-Modus) und der Diagonal/multidimensinale/stochastische-Schwing-Modus in einem All-in-one-Gerät als echter Multidimensional-Schwinger verwirklicht. Die Edelstahlversion der liebevoll „die Vibe“ genannten Platte ging als Comeback unter dem Namen bestvibe“classic“ im Juni 2009 wieder an den Markt.

 

Parallel zur Entwicklung der bestvibe“medy“ entwickelte Ossy Lieser das für die Stimulation der Feinmuskulatur ausgelegte Hand-Gerät bestvibe“benita“ aus der Geräte-Serie bestvibe“mini“. Hieraus entstand die Weiterentwicklung der heutigen bestvibe“matrix“, die erfolgreich im Human- wie im Veterenär-Bereich eingesstzt wird.

Sie zeichnen sich besonders aus durch mehrere leicht austauschbare Behandlungsköpfe mit nur einem einzigen Motorteil, – und ganz besonders – durch den multifunktionalen Behandlungskopf „multi-plus“.

Somit war nur noch ein einziges Behandlungs-Teil notwendig, bei dem die Köpfe wahlweise getauscht werden können.

Um das Geräteprogramm zu komplettieren, war es nur logisch, das Standgerät  bestvibe“medy-1″ zu entwickeln. Hier wurde besondere Sorgfalt auf den freischwingenden Behandlungskopf (Applikator) gelegt.

Die Vorteile der bestvibe“medy-Serie“

Zwischen dem Behandler und dem Patienten befand sich nur noch der in Höhe verstellbare Applikator, der ausserdem noch bis in Schulterhöhe gefahren werden kann. Somit ist für Behandler wie für den Patienten eine ergonomisch richtige Positionierung möglich.

 

Die bestvibe“MEDY-2″ war dann als Weiterentwicklung mit dem linear auf und ab beweglichen Applikator nur noch eine konsequente Ausführung in Ergonomie, Design und Technik. Frequenzbereich: 6 bis 35 Hz.

Ganz besonderer Wert wurde bei allen Geräten auf die geringe Geräuschentwicklung während der Behandlung und die platzsparende kleine Aufstellfläche (kleiner als eine Euro-Palette!) gelegt.

Weitere Geräte mit bisher nicht gekannten Möglichkeiten sind z. Zt. – zum Beispiel im Veterinärbereich – in der Entwicklungsphase.

Studien und Literatur

  • Thomas Klyscz, Claudia Ritter-Schempp, Michael Jünger,Gernot Rassner, Biomechanische Stimulationstherapie (BMS) zur physikalischen Behandlung des arthrogenen Stauungssyndroms. Der Hautarzt/Volume 48, Number 5 /May 1997

  • Klyscz T, Rassner G., Guckenberger G. Junger M. Biomechanical stimulation therapy. A novel physiotherapy method for systemic sclerosis. Adv Exp Med Biol, 1999;455:309-16

  • M. Jünger, A. Steins, D. Zuder und T. Klyscz Physical therapy in patients with chronic venous insufficiency. Journal of Vascular Diseases 1998, Heft 2
    C. Bosco, M. Cardinale, R. Colli, J. Tihanyi,S.P. von Duvillard, A. Viru.The influence of Whole Body Vibration on the Mechanical Behavior of Skeletal Muscle. Correspondence Societa Stampa Sportiva

  • Bosco, C., e.a. Influence of vibration on mechanical power and electromyogramactivity in human arm flexor muscles. 74, 1999
    Bosco, C., e.a. The influence of whole body vibration on jumping performance. Biology of Sport, 3, 1998, 157-164

  • C. Bosco, M. Iacovelli, O. Tsarpela, M. Cardinale, M. Bonifazi, J. Tihanyi, M. Viru, A. De Lorenzo, A (2000). Hormonal responses to whole – body vibration in men. Viru European Journal of Applied Physiology. 81:449-454

  • Bosco, C. e.a. Adaptive responses of human skeletal muscle to vibration exposure. Clinical Physiology, 19, 1999

  • Marianne Walter, Biomechanische Stimulation /BMS) und Ihre Anwendung in der Physiotherapie, Therapie und Praxis, offizelles Organ des VDB-Physiotherapieverband Nr. 6/97
    V.B. ISSURIN, G. TENENBAUM. Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. Journal of Sports Sciences Volume 17, Number 3 / March 1, 1999

  • J. Rittweger, G. Beller, D Felsenberg (2000). Acute physiological effects of exhaustive whole-body vibration exercise in men. Clinical Physiology. 20,2,134
    E.H.Burger and J. Klein-Nulen, Responses of bone cells to biomechanical forces in vitro. ACTA-Vrije Universiteit, Department of Oral Cell Biology, Van der Boechorstraat 7,01081 BT Amsterdam, The Netherlands

  • Feketa VP. Application of biomechanical stimulation of lower extremity muscles in the treatment of patients with hypertension, Kardiologiia, 1992;32(11)-12):23-5
    Anke Steins, M. Jünger Physical Therapy in Patiens with Chronic Venous insufficiency. Departement of Dermatology, University Hospital, Tübingen, Germany

  • C. Delecluse, M. Roelants, S Verschueren (2003). Strength Increase after Whole-Body Vibration Compared with Resistance Training. Medicine and Science in Sports and Exercise

  • Stephen D. Waldmann, PhD, Caroline G. Spiteri,BASc. Marc D. Grynpas, PhD, Robert M. Pilliar, PhD, Jason Hong, PhD and Rita A. Kandel, MD. Effect of Biomechanical Conditioning on Cartilaginous Tissue Formation in Vitro. The Journal of Bone and Joint Surgery (American) 85:101-105 (2003)

  • Jorn Rittweger, Hans Schiessl, Dieter Felsenberg (2001).Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physio 86: p. 170

  • Flieger, J. e.a. Mechanical Stimulation in the Form of Vibration Prevents Postmenopausal Bone Loss in Ovariectomized Rats. Calcif Tissue, 63, 1998, 510-514.
    Eric M. Darling and Kyriacos A. Athanasiou. Biomechanical Strategies for Articular Cartilage Regeneration. Annals of Biomedical Engineering Vol. 31, Number 9 October, 2003

  • C. Ruben. L. Lanyon, (1984), Regulation of bone formation by applied dynamic modes. J. Bone Joint Surg 66-A:397-402.

  • Jorn Rittweger, Marcus Mutschelknauss, and Dieter Felsenberg (2003). Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clinical Physiology & Function Im 23, p. 82

  • S. Verschueren, M. Roelants, C. Delecluse, S. Swinnen, D. Vanderschueren, S. Boonen.(2004) Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A. Randomized Controlled Pilot Study. Journal of Bone and Mineral Research, Volume 19, Number 3, 2004

  • M. Roelants, C. Delcluse, S. Verschueren (2003). Strength Increase after Whole-Body Vibration Compared with Resistance Training. Medicine & Science in Sports and Exercise, p. 1037

  • S. Torvinen, P. Kannus, H. Sievanen, T.A.-H. Jarvinen, M. Pasanen, S. Kontulainen, T. Jarvinen, M. Jarvinen, P. Oja, I. Vuori (April,2002). Effect of four-month vertical whole-body vibration on performance and balance. Journal of the American College of Sports Medicine. 1526

  • Rubin C. Pope M. Fritton JC, Magnusson M, Hansson T, McLeod K. Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine : determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine. 2003 Dec.1;28(23):2621-7

  • H. Nakayama M. Shibuya, N. Kaneko, M. Yamada, H. Suzuki, M. Arakawa, I. Homma, (1998) : Benefit of in-phase chest wall vibration on the pulmonary hemodynamics in patients with chronic obstructive pulmonary disease. Respirology 3:235-240

  • O. Bruyere, M.A. Wuidart, et al. (October 23-28, 2003) Presentation : Controlled whole body vibrations improve health related quality of life in elderly patients. Orlando FL: American College of Rheumatology: 203 meeting: Abstract 1271

  • Gilsanz V. Wren TA, Sanchez M. Dorey F, Judex S. Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD
    Rubin, C. Sommerfeldt, D. Judex, S & Qin, Y-X. (2001) Inhibition of Osteopenia by Low Magnitude, High Frequency Mechanical Stimuli. Drug Discovery Today 6:848-858

  • Murfee WL, Hammett LA, Evans C. Xie L. Squire M. Rubin C, Judex S. Skalak TC. High-frequency, low – magnitude vibratons suppress the number of blood vessels per muscle fiber in mouse soleus muscle. J. Appl Physiol. 2005 Jun; 98 (6): 2376-80. Epub 2005 Jan 27

  • H.J. Malleikat, O. Altmeyer, M. Bacharach-Buhles, Sklerodermie im Kindesalter: Diagnostik und Therapie. Vortrag anlässlich des 28. Kinderrheumatologischen Symposiums, Januar 2002, Garmisch-Partenkirchen.

  • Judex S. Zhong N, Squire ME, Ye K, Donahue LR, Hadjiargyrou M, Rubin CT. Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue. J. Cell Biochem, 2005 Apr. 1;94(5):982-94

  • Hannan MT. Cheng DM, Green E. Swift C, Rubin CT, Kiel DP. Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study. Osteoporos Int. 2004 Nov. 15 (11): 918-26. Epub 2004 May 27

  • Issurin, V. B. e.a. Effect of vibratory stimulation training on maximal force andflexibility. E & F. N. Spon, 1994, 4, 562-566
    Ward K, Alsop C, Caulton J, Rubin C. Adams J. Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J. Bone Miner Res. 2004 Mar;19(3):360-9. Epub 2004 Jan. 27

  • 36. Rubin C, Recker R, Cullen D. Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004 Mar;19(3):343-51. Epub 2003 Dec 22

  • Guillermo Garcia-Cardena, Jason Comander, Keith R. Anderson, Brett R. Blackman, and Michael A. Gimbrone Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype

  • Judex S, Boyd S. Qin YX, Turner S. Ye K, Muller R, Rubin C. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann Biomed Eng. 2003 Jan. 31(1);12-20

  • Nazarov, Vladimir. Optimierung des Menschen 1. Aufl. Lobenstein. Nazarov-Stimulation-Ges. für Naturheilverfahren, 1996

  • De Gail, P. Lance, J.W. Nielson, P.D. Differential effects of tonic and phasic reflexmechanismus produced by vibration of muscles in man. Journal of Neurology, Neurosurgery and psychiatry, 29, 1966, 1-11

  • S. Gottschild, P. Kröling.Vibratory Massage A Review of Physiological Effects and Therapeutical Efficacy. Phys Rehab Kur Med 2003; 13:85-9

  • Rubin, C., Turner, S. Bain, S. Mallinckrodt, C. & McLeod, K. (2001) Extremely Low Level Mechanical Signals are Anabolic to Trabecular Bone. Nature 412:603-604

  • Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli, FASEB J. 2001;15(12):2225-9

  • Biermann W, Influence of cycloid vibration massage on trunk reflexion, 1960

  • Nazarov V, Spivak G, – Development of athlete’s strength abilities by means of biomechanical stimulation method., 1987

  • Griffin, Handbook of vibration

  • Schmidtbleicher, Neuromuskuläre Stimulation